

Observation & Orientation for Multi-
Domain Operations with an Intelligent

Tactical Fog

Presented by:

The Team:

Jason Lind
Project Lead
lind@multiplex.studio

Nick Chadwick
Lead Architect
chadwick@multiplex.studio

Mitchell Maddox
Project Manager
maddox@multiplex.studio

Karl Walinskas
IR&D Business Development
kwalinskas.ctr@technicacorp.com

Brendon Unland
SmartFog Architect
bunland@technicacorp.com

Ron Herardian
Security Architect
ron@basilsecurity.com

Multplex.studio was formed to tackle the AFWERX
MDO Challenge and is the partnership between several
independents, Technica and Basil Security. Technica
brings their SmartFog platform to the equation which
will be used as the backbone of this proposal and Basil
Security’s distributed policy enforcement system will be
leveraged for multi-level classification, as well as for
multi-level encryption.

MultiPlex|studio

mailto:lind@multiplex.studio
mailto:chadwick@multiplex.studio
mailto:maddox@multiplex.studio
mailto:kwalinskas.ctr@technicacorp.com
mailto:bunland@technicacorp.com
mailto:ron@basilsecurity.com

Executive Summary

Multiplex.studio is an amalgamation of technology companies presenting an innovative, best-of-breed
solution for the AFWERX MDO challenge. This proposal shows the integration of Technica Corporation’s
SmartFog platform technology in conjunction with Basil Security to create a horizontal system-level
architecture to distribute computing, storage and networking functions. We provide an advanced, policy-as-
code framework for distributed security policy enforcement that combines next-generation NIST attribute
Based Access Control with event-driven and stateful security policy conditions.

Technica’s approach with SmartFog platform consists of a system level architect that distributes computing
and network functions over a Cloud-to-Thing (CtT) environment as an extension of the existing cloud-based
model already in use with network topology. By implementing this strategy closer to the edge of where these
Internet of Things (IoT) reside, we can process data in near real-time, validate and analyze at both the Edge
and in the cloud while minimizing effects of bandwidth limitations. The Edge uses a dedicated server collecting
localized data, thus reducing the burden from the core on-premise data centers within cloud systems and
allowing more accurate analysis locally, so that only relevant information is then processed and sent forward.
The cloud will offer more powerful computing resources and more advanced analysis to be sure; however,
typical of tactical situations, communications are often denied, degraded, intermittent or limited (D-DIL) at
best, driving the requirement for edge capabilities.

Basil Security offers an advanced distributed security policy enforcement effort that combines next-generation
NIST attribute-based access control (ABAC) with event-driven security policy conditions. These event-driven
conditions are information on the network that generates a security policy decision communicated to the
policy validation system based on a change in the external environment. Basil security policies are referred to
as “Smart Policies” because, unlike static access control rules, Basil policies adapt automatically under
changing conditions, based on events or external state information. In this MDO proposal, Basil addresses
many of the integrated information security classification issues and the technical operations for security and
provides an overlay of security policies over otherwise disparate systems. Basil provides single-pane-of-glass
visibility into policies across the complete, integrated MDO system.

Multiplex.studio’s solution for the data architecture will be to collect data at the Edge, perform validation and
analysis and securely stream those results to the cloud. Technica’s SmartFog platform is leveraged for enabling
seamless D-DIL streams from the fog layer to the cloud and Basil’s policy enforcement engine enables multi-
level classifications and data encryption in support of warfighter needs.

Our Interpretation of MDO
In today’s conflicts and future wars, the ability to maintain a persistent presence, ensure a cohesive
operational perspective, and maximize processing of systems and personnel is critical to effectively employ
multi-domain capabilities and produce significant and simultaneous challenges for our competitors across all
domains.

More than just operating weapons systems in multiple domains, Multi-Domain Operations (MDO) describes
the seamless, dynamic and continuous generation of offensive/defensive effects across all the established
domains: cyber, air, space, land, sea, sub-surface and electromagnetic spectrum. This includes coordination
and execution of not only all five branches of the US Armed Services but Allies as well. Coalition forces must
have the operational agility to seamlessly shift between levels of war, geographic areas, missions, functions
and warfighting domains and must be able to dynamically create multiple dilemmas for an adversary at an
operations tempo they cannot match.

MDO Strategy

The vision of MDO is one of Rapid,
Resilient and Agile Adaptation and
Intuition.

Rapid: from signal to decision in less
than 15 minutes

Resilient: supports a dynamic
battlespace and continues to
operate even under attack at the
edge

Agile: integrate a diverse set of
warfighting players and data sources

Adaptation: must operate in a wide
variety of contexts with minimum
effort to reconfigure

Intuition: advanced data analysis
through artificial intelligence (AI)
and machine learning (ML)

Figure 1 – MDO Strategy representation

The MDO Problem Set

The 2018 National Defense Strategy (NDS) states we cannot expect successful operations in tomorrow’s
conflicts with yesterday’s weapons, equipment, or force structure. Currently, the Air Force does not
adequately integrate, fuse, plan, employ or debrief information (e.g. intelligence) and effects across all
domains. In future multi-domain battlespaces, unassured communications, and siloed information and
capabilities (due to lack of multi-level and cross-domain security policies) will limit operational agility and
effects while increasing operational risk to mission and force. Adversaries continue to gain the ability to make
faster tactical and operational decisions; when the Air Force effectively integrates multi-domain effects
through a resilient kill mesh/network (replacing a linear “kill chain”), capable of operating at the tactical edge,
the joint force should realize a decision advantage over peer competitors. When fully leveraged, the
continuum across domains of battle management and command and control (BMC2) capabilities and
professionals provide the unparalleled perspective, insistent presence, and processing required to (1) manage
information, (2) orient systems, (3) synchronize effects, and (4) speed decisions across the spectrum of
conflict.

As distinct advanced combat capabilities continue to drive employment concepts, disconnects (intelligence,
information, effects-based planning, briefing, execution, and debriefing (PBED)) within the air, space, and
cyber domains increase (“All-domain” operations is distinct from “multi-domain” operations). Despite
advances in automation, machine learning, and artificial intelligence, man-in-the-loop requirements still exist
as a result of C2 policies, architecture, infrastructure, training, organization, and systems limitations.

To address current shortfalls and ensure continued multi-domain relevance and efficacy, the Air Force BMC2
enterprise, IA policies, and conditions-based authorities’ paradigm must evolve. The three primary objectives
of this vision are:

1. Multi-domain weapons systems must be scalable and be able to integrate and be employed at the
edge and across multiple levels of security.

2. Capabilities must be survivable and operate with open architectures to allow for faster integration of
technology providing multi-domain, joint/coalition interoperability.

3. Tailored and automated integration of INTEL, CYBER, and SPACE personnel and systems must present
easily understood courses of action to operators and decision makers. This includes an
assessment/feedback mechanism that allows branches and/or sequels.

Observe-Orient-Decide-Act Loop Architecture

Observe-Orient-Decide-Act (OODA) was introduced by Colonel John Boyd, USAF in the 1950’s to help train
fighter pilots and has since been extended to a wide array of strategic scenarios encompassing both individual
decision making and the collective.

Observe: build a comprehensive picture of the situation with as much accuracy as possible.

Orient: find mismatches: errors in your previous judgement or in
the judgement of others. Generally, bad news is the best kind
provided that you catch it in time, as you can turn it to your
advantage.

Decide: having gathered information and oriented ourselves, we
must make an informed decision. The previous two steps should
have generated a plethora of ideas, so this is the point where we
choose the most relevant option.

Act: execute the decision and then Observe the results.

Multiplex OODA Component View

To achieve a solution to the problems described on page 3 we must identify several components in each frame

of reference. In the Observe frame we Validate raw data which is then Analyzed and Presented in the Orient

frame. The enhanced data is then used in Decision Modeling in the Decide frame and that decision is

Distributed and Acted upon in the Act frame.

Multiplex will focus on Validate and Analyze components.

Observe—Validate

The Validation component applies metadata to raw inputs for further processing and can include

transformations and combining of data.

Orient—Analyze

The Analysis component takes the output of Observation and applies Artificial Intelligence/Machine Learning

to produce details for enhanced decision making.

Figure 2 – Classic OODA Loop

Figure 3 – MDO OODA Loop

An Introduction to Fog Computing

The OpenFog Consortium was founded by Microsoft, Intel, Dell, Cisco, and others in 2015 and defines Fog
Computing as “A horizontal, system-level architecture that distributes computing, storage, control, and
networking functions closer to the users along a cloud-to-thing continuum”.

Fog computing is an extension of the traditional cloud-based computing model where implementations of the
architecture can reside in multiple layers of a network’s topology. However, all the benefits of cloud should be
preserved with these extensions to fog, including containerization, virtualization, orchestration, manageability,
and efficiency. In many cases, fog computing works with cloud.

In the notional diagram below, Fog nodes exist on vehicles, drones, aircraft--even the warfighter, to
communicate and control IoT sensors. These nodes would talk to each other and role up to the base FedRAMP
cloud. This topology is ideal for resiliency in validation and analysis in D-DIL environments and refresh data
models when connectivity is restored.

The solution we will describe in the
subsequent pages will present a
Data Architecture that leverages the
OpenFog concept to provide
Capture, Validation, Analysis and
Multi-Level Secure Distribution of
arbitrary Data while providing and
an example workflow that leverages
combining data from multiple
sensors and feed that result to an
Artificial Intelligent model while
tagging the various data packages
with classifications and distributing
those. A notional fog architecture is
shown below.

Figure 4 – Notional Battlefield Fog
diagram

EDGE LAYER
End Devices/
Sensors

FOG LAYER
Nodes

DATA CENTER/
CLOUD LAYER

Edge

Core

Geographic Locations

Figure 5 – Fog role in the Tactical Information Stream

diagram

The Bureaucratic Data Silos

The vision of a DoD unified data fabric that has broken down the data silos within DoD components,
disciplines, and layers of bureaucracy is obtainable. The intelligence community, at the direction of the
Director of National Intelligence, has been working on such a data fabric using cloud technologies as the
foundation. We will frame the problem that data is currently stored in thousands of NetApp, Dell, EMC,
Avamar, 3Par, Oracle, and many other vendors’ storage appliances within their data centers. The majority of
data is unused or has not been accessed for years. Some of this is due to regulatory requirements from the
National Archives, HIPAA, and other US Codes. Making matters worse, most DoD organizations use SharePoint
for a document library with SQL back-ends, which makes the least valuable data the most expensive and
hardest to actually use without writing complicated structured query language (SQL) code based on custom
database schemas. The most valuable data is the data that is part of the OODA loop that is relative to the
organizational mission today; which in the DoD is to win or prevent wars. We must always be mindful of
Conway’s Law, which at its premise describes that our applications and infrastructure (including data) are
representative of the way we communicate in an organization. The current state of DoD data is therefore a
massive bureaucratic sprawl that requires many manual processes built to make it very difficult to share data.

The data silos and bureaucracy can be broken down by moving the data into a unified DoD data lake and
leveraged to discover new insights by applying machine-learning models. This data should be auto-tiered by
cloud providers based on usage and value to the organization. The Observe and Orient part of the OODA loop
can then use this historical data to provide additional context to new data coming from current operational
missions. This new data that is to be stored in a cloud service provider must be pushed through data pipelines
to extract the maximum value. These pipelines should include capabilities such as Object Recognition, Optical
Character Recognition, Natural Language Translation, Sentiment Analysis, and other organization specific
machine learning models developed. The data pipelines should be applied closest to the source of the data
allowing faster OODA loop to occur. This enables commanders and tactical consumers of the intelligence
extracted from the data to seize the initiative and achieve faster insight. This means, not only having a faster
OODA loop then the opponent force, but achieving overmatch by presenting additional dilemmas by
discovering more opportunities to exploit. The closest source of valuable data is the data at the tactical level
and cuts across all layers of MDO.

Fog Computing and Data Locality

The use of Fog Computing allows these data pipelines to be built across the tactical level and ensures that data
is enriched, verified, and leveraged for immediate intelligence and targeting. Data locality and data gravity are
important considerations even in a world with gigabit LEO satellite systems and 5G. Data locality ensures that
the data is stored closest to the location where it is processed and consumed. Data gravity is a theory that
states that applications and likewise machine learning should be closest to where the preponderance of data
is physically located. This is because the DoD network (e.g. DoDIN, MPE) or internet may not always be
available as many have learned trying to access SharePoint over a SATCOM link primarily due to latency. Even
when a reliable network is available and latency is very low (< 5ms), the use case for Fog Computing remains
to allow for efficient use of bandwidth and survival of capability when Electronic Warfare (EW) tactics are
used. The main difference between Fog Computing and Edge Computing is that Fog Computing is distributed
mesh network with tiers, while Edge Computing is not and relies completely on the wide area network to
share data and intelligence. When the wide area network is available Fog Computing ensures that it is
efficiently used to move data into a cloud service provider were further long-term analysis can be conducted.

SmartFog Platform & Microservices

Technica’s Independent Research and Development (IR&D) division developed the SmartFog prototype
platform to bring functions (compute, storage, networking, AI-acceleration, analytics, and management
control) closer to the edge—where the IoT devices reside.

This allows IoT events to be processed in near real-time. Importantly, SmartFog allows for data localization, i.e.
data can be processed near the edge. This offloads some of the analytics burden from the cloud or core on-
premise datacenters. Faster results are obtained, and with less security risk, than transmitting all data to
central servers for processing.

SmartFog Microservices Catalog

SmartFog Microservices provide discrete functions and can be viewed as analogous to apps on smartphones.
However, unlike most smartphone apps, SmartFog Microservices can pass messages between themselves to
create composite microservices. For example, the Anomaly Detection Microservice (described below) can
communicate with the Complex Event Processor (CEP) Microservice to trigger alarms or alerts. Microservices
can be dynamically updated, like upgrading apps on smartphones.

While SmartFog is a powerful platform, the platform is only as powerful as the jobs it can perform. Thus, the
innovations involved in creating the platform, e.g., enabling Docker and Singularity images on the NVIDIA TX2
that can be accelerated using graphics processing units (GPUs), are matched with microservices, to provide
Message Queuing Telemetry Transport (MQTT), message brokering, anomaly detection, and federated
learning.

While a microservice can be created for nearly everything— just like smartphone apps—Technica sees the
greatest value in providing microservices that take advantage of hardware acceleration and offer AI
capabilities with Deep Learning algorithms.

Figure 6 – Representative SmartFog Architecture

Anomaly Detection

The Anomaly Detection Microservice (ADM) uses a specific neural network architecture—an autoencoder—to
compress and decompress data as shown in the figure to the right.

The orange neural layers in the figure reduce the input into a compressed feature vector. The green neural
layers attempt to expand the feature vector and recreate it. Since the network is trained to reproduce
common data easier, data with more decompression errors is identified as anomalous. This neural network
construction can be used to detect outliers in any signal that can be represented mathematically, e.g.,
network traffic packet capture data, radio frequency data, Humvee sensor data (engine temperature, tire
pressure), etc.

There are two major steps to implementing a Deep Learning based algorithm like Anomaly Detection.

• Training—the process in which the Neural Network learns from the data to expect “normal”
conditions.

• Inference—once the training is complete, the model is deployed. Real-time data is then processed by
the model.

The inference process for the Anomaly
Detection Microservice involves calculating
an anomaly score. The parameters of this
score are configurable. In other words, the
threshold at which an Anomaly is detected
is configured by the user.

The training and inference workflow is basic
to all Deep Learning algorithms. This
process typically is continuous, such that
the AI models steadily improve over time.
At a minimum, the training is usually done
in the cloud. Often, inference is also done in
the cloud. However, one the central
motivating factors for the creation of
SmartFog was the desire to deliver AI

capabilities to the tactical edge. Given D-DIL constraints, a continuously improving AI model becomes
problematic because a cloud connection is not always available.

For these reasons, Technica developed a series of SmartFog Microservices to provide Federated Learning.

Figure 7 – Autoencoder

Federated Learning

Using the traditional approach, training a neural network requires having a single copy of the model and all
the training data in one place. In many real-world scenarios, data is gathered across an array of sensors. In
those scenarios, all sensor data would have to be sent to a central server for training and the resulting
network weights would have to be distributed back to the sensors. However, these sensors often have limited
bandwidth and intermittent connections to the central server. Federated learning allows the model to be
trained on each edge device and is based on the data parallelism model.

In the data parallelism model, multiple copies of the neural network are created. The training data is split
between the copies of the network, such that each copy is trained on an independent section of data. Once all
copies of the model are trained, the resulting weights are aggregated at a central repository. This is usually
accomplished by averaging the weights of the independently trained models. It is easy to see how this
translates to edge computing, where each edge device trains a copy of the neural network using the data that
it observes. The new network weights are sent to the central server for aggregation, and the resulting model is
then distributed to the edge devices. In this way, the model at each edge device will have learned from the
data gathered from all devices without having to transmit the full training to the central server. This greatly
reduces bandwidth requirements and can occur when a connection to the central server is available.

Technica’s anomaly detection on the edge model is comprised of two elements, as seen in the figure below.
One is a distributed set of devices each deployed with a copy of the autoencoder and the other is a central
server for aggregating and distributing changes to the trained autoencoder network weights. Multiple rounds
of training and aggregation may occur in order to produce better results. The edge devices independently
gather observations and determine an anomaly score for each.

 Figure 8 – Federated Learning representation

High Level Data Architecture

A key requirement of the AFWERX MDO Challenge is that the solutions be data source agnostic. We have
identified that NIPR, SIPR, JWIC/NSANet, some SAP/SAR nets and Coalition Networks will be likely data
sources.

Data is collected in real-time, validated, and analyzed at both the edge and in the cloud. The edge consists of
dedicated servers that sit close to the action, where communications to individuals and sensors is less likely to
be disrupted while also conserving uplink bandwidth. The cloud will offer significantly more powerful
computing resources and more advanced analysis; however, it is typically only intermittently (at best)
available in the field.

As data is collected in real time at the edge it is then validated at the edge producing artifacts such as
additional organization, filtering and security attributes in a data set which is then queued for transfer to the
cloud where additional validation, such as translating the data into common data schemas, or comparative
sensor integrity, in order to validate signals from other edges regarding the same event against each other and
to detect enemy tampering with signals. Analysis then occurs at both the edge and in the cloud, applying AI
and ML to aid in decision making, or to suggest actions, from units in the field to senior leadership.

Figure 9 – Hi-Level Data Architecture

Streaming Architecture

Fog nodes, running the SmartFog Platform, will host Kafka clusters. Apache Kafka is a stream-processor that
provides a unified, high-throughput, low-latency platform for handling real-time data feeds. Kafka will be
connected to various sensors in the fog layer producing streams whose broadcast is captured by a validation
component that writes validated information back to Kafka. Data will then be classified by the Basil distributed
policy system and pushed to the cloud which implements a similar workflow with additional analysis, including
AI/ML processing.

Figure 10 –Streaming Architecture

Multi-Level Security, Encryption, and Information Classification
MDO involves multiple technical systems, which have different, detailed security requirements. Across all
components of the complete, integrated MDO system, established security mechanisms and best practices
must be implemented, for example, encryption of data in flight and at rest. However, the scope of this section
is not to describe a general security architecture that implements well known security mechanisms and best
practices. The proposed solution, while it shall include well known security mechanisms and best practices, is
based on the Basil policy-as-code platform.

Basil Policy-as-code Platform

Basil is an advanced, high performance policy-as-code framework for distributed security policy enforcement
that combines next-generation NIST attribute-based access control (ABAC) with event-driven and stateful
security policy conditions. Event driven conditions refer to information that triggers security policy decisions
communicated to the policy system from an external system based on a change in state in the external
system. Stateful conditions refer to information that the policy system must request from external systems to
determine if their current state meets policy requirements. Basil policies are referred to as “Smart Policies”
because, unlike static access control rules, Basil policies adapt automatically under changing conditions, based
on events or external state information.

Basil addresses many aspects of MDO security because it serves both as an integrated component, e.g., for
information classification and technical operations security, and also as an overlay able to enforce security
policies over otherwise disparate systems. Basil provides single-pane-of-glass visibility into policies across the
complete, integrated MDO system.

Zero Trust Security and Operations

MDO involves the operation of and privileged access to systems, environments, applications, and sensitive
data, as well as to application programming interfaces (APIs), code, and digital secrets, such as API and
encryption keys. MDO requires multiple security levels that must operate across all levels of US and allied
militaries. Zero Trust is a security model based on the principle of maintaining strict access controls for every
interaction within a system and of not trusting any system or individual by default, even those already inside
the network perimeter. Basil is a zero-trust system where every action by every actor, whether human or
machine, is subject to policy evaluation.

Multi-level Access Control

As a policy system, Basil is not a conventional identity and access management (IAM) system. Basil assumes
the use of external standards-based authentication (AuthN) and authorization (AuthZ) using the OAuth and
JavaScript Object Notation (JSON) Web Tokens (JWT) standards together with OpenID Connect (OIDC). Using
this model, each MDO coalition partner can act as their own authoritative identity provider (IdP) without any
single party having control over an aggregate set of credentials.

Internally, Basil creates a unique asymmetric private key for each actor and every action within Basil is digitally
signed. Basil policies can be used to define “Synthetic Roles” using any collection of attributes associated with
actors, and to emulate role-based access control (RBAC). Synthetic Roles can be used to create a 1:1 mapping
of RBAC if desired. Additionally, Basil supports fine grained differences between actors based on (1) arbitrary
combinations of attributes that may or may not correspond to RBAC roles; and (2) the state of any attribute
referring to an external system. For example, the length of time since the last communication with a system
could be used to change the access level of an actor or actors.

Policy Integrity Across Systems

In most systems, particularly in systems of systems, such as MDO, there is typically no provable link between
security and operational policies and the implementation of policies in constituent systems. Auditing often
involves manual data collection and analysis and can be time consuming. Specifically, auditing is anti-agile and
can delay adaptation of a system to operate in a wide variety of contexts with minimal effort.

Basil creates a chain of integrity for policy enforcement across systems. In order to facilitate distributed
replication of policy information in a strongly consistent manner, Basil includes plugin drivers for several
different database systems. The default plugin is a blockchain based datastore, which is a private,
permissioned blockchain that utilizes a proof of authority (PoA) consensus algorithm based on Parity. The
blockchain enables the policy system to act as a distributed state machine where nodes within the policy
system are cryptographically guaranteed to observe a single, consistent set of policies.

Unified, Immutable Audit Logging

A problem related to policy integrity is unified audit logging. In most systems, particularly in systems of
systems, security and operations auditing is highly fragmented because different components generate
different log data and use different security and operational mechanisms. Basil enforces policies over access
and serves as an execution context for otherwise disparate tools and APIs. As a result, Basil maintains a unified
audit log and ensures accountability for all actions, whether by humans or machines.

Using a blockchain, logging of policy changes, approvals, and other actions is immutable, which means that the
logged information cannot be tampered with or erased. Combined with non-repudiation, based on the use of
digital signatures, blockchain based logging constitutes digital forensic evidence ensuring the security of log
data, as well as the accountability of all actors, whether human or machine.

In addition to Basil’s own logs, it is possible to record the hash values of external logs on the blockchain so that
the integrity of the logs can be proved. When there is an output of interest, the log output can be optionally
hashed with a cryptographically secure hash function, and the hash can be included in the log database.

Since Basil is an ABAC policy system, policies can be used to provide selective views of audit data. For example,
MDO coalition partners can be optionally permitted to view audit data related to their own forces, or other
select forces.

Human Readable Policy Language

The Basil policy language (BPL) is a human-readable format similar to an infrastructure-as-code (IaC) domain
specific language (DSL). BPL is a variant of the opensource HashiCorp Config Language (HCL), which is a
popular opensource language used by HashiCorp Terraform. Terraform is an IaC software tool that allows
users to define and provision infrastructure as a service (IaaS) in a simple, declarative way. BPL is well suited to
MDO use cases because it is relatively easy to understand. Additionally, web-based forms can be created to
manage Basil policies, rather than relying entirely on BPL source code.

Fault Tolerance and Resilience under D-DIL Conditions

In the MDO system, D-DIL communications are expected. Additionally, components may fail, or may be
compromised, and there may be imperfect information on whether a component has failed or is
compromised. The technical term for these conditions is Byzantine failure. A consensus algorithm represents a
strategy to avoid catastrophic system failure under Byzantine failure conditions. Basil is a blockchain-based,
distributed system that operates as a set of nodes linked by Internet Protocol (IP) networks. Since it is
Byzantine fault tolerant, Basil nodes can be added or removed from the network and communication can be
disrupted or restored without compromising the overall integrity or operation of the system. If Basil nodes are
compromised, the consensus algorithm and cryptographic mechanisms guarantee the integrity and
consistency of policies.

Use of Basil for MDO
Basil is a general purpose policy management and enforcement system that can be used to implement
security controls over multiple, normally disparate areas, such as application logic and hardware
configuration. For MDO, six (6) Basil use cases have so far been identified:

• Application Security

• Automation Security

• Development and Technical Operations Security

• Hardware Configuration Security

• Policy-based Information Classification

• Multi-level Encryption

Application Security

MDO applications can obtain security policy verdicts through the Basil representational state transfer (REST)
API or Basil can be used as a proxy for API calls. Additionally, Basil can consume webhooks and, through its
plugin system, can be integrated with message queuing systems or event stream-processing software
platforms, such as Apache Kafka, which will allow Basil to be informed of changing conditions and to take
actions as a result pursuant to defined policies.

Automation Security

Basil will be used to validate machine-to-machine interactions as data flows through MDO systems to the
cloud. Within Basil, human and machine actors are equivalent for the purpose of policy evaluation. Webhooks
are a common form of interaction natively supported in the Basil AuthN/AuthZ model, allowing Basil to
enforce rich policy descriptions on machine-to-machine interactions. This may include selective forwarding of
webhooks based on external or internal information. An example use case of this capability is access control
logic when integrating automated build and test (continuous integration) systems with source control systems,
which is an often overlooked attack surface.

Development and Technical Operations Security

Basil addresses the ongoing development and operation of the complete, integrated MDO system. The need
to develop software and to make software changes faster has led to high levels of automation, i.e., continuous
integration and continuous delivery (CI/CD), and to the integration of development and operations (DevOps),
particularly for software as a service (SaaS). However, neither automation in general, CI/CD in particular, nor
DevOps make software or systems more secure or prevent erroneous or malicious actions by insiders.

Basil will be used to institute and enforce new security controls over MDO DevOps activities such as managing
automated CI/CD pipelines, cloud infrastructure, orchestration systems, e.g., Kubernetes, and the related use
of digital secrets, such as API keys, certificates, and encryption keys.

Hardware Configuration Security

Hardware devices, such as network routers, on-board computers, and other smart equipment, often support
dynamic configuration through RESTful APIs, e.g., IoT devices, routers, and network switches. Misconfiguration
of hardware devices can result in large scale exploits or system failures, potentially on a global scale. Basil will
be used to enforce strict control over hardware configuration changes and to establish failsafe policies
designed to prevent catastrophic failures. If a hardware device does not expose a RESTful API, Basil can
leverage Secure Shell (SSH) or another mechanism.

Policy-based Information Classification

Security related attributes will be associated with data as early as possible so that security attributes can be
used to control access using Basil policies at the tactical level. As information is aggregated, combined, or,
later, processed in the cloud, the security attributes in each data set can be compared to the attributes of
human or machine actors attempting to access the data.

In Basil, a set of information classification policies will be defined based on data attributes. Smart Policy
evaluation may require Basil to obtain information from other systems in order to complete a policy
evaluation. As data streams in from the edge from different data sources, it will be packaged in standard
formats, such as JSON documents, and will have associated metadata attributes. As a part of the process of
filtering and of assigning attributes to data, API calls will be made to Basil to request a classification policy
verdict. Policy evaluations do not require blockchain consensus, thus API calls to the Basil Server are similar to
other scalable microservices.

Multi-level Data Encryption

Using Basil, the MDO system can encrypt data using different keys for different coalition partners and
classification levels corresponding to the attributes associated with the data and with actors in the Basil
system. Basil policies can use combinations of attributes to evaluate requests for unencrypted data access. In
this context, it is possible for coalition partners to, optionally, provide their own encryption keys when they
are on-boarded into the MDO system.

Since Basil can execute arbitrary code as the result of a policy evaluation, it can be used to encrypt and to
decrypt data on demand. The advantage of using Basil to manage data encryption and decryption is that Basil
isolates encryption keys from actors. Basil can be integrated with key management systems or credential
vaults and can be used to execute code on behalf of any actors pursuant to a policy evaluation. Actors do not
require access to secret key material. Additionally, within Basil, digital secrets are a special data type,
represented in all cases except code execution using ephemeral tokens which can be safely reflected in logs
and which cannot be used to compromise the Basil system.

