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Abstract

The Dunning–Kruger effect describes a cognitive bias whereby individuals with
lower ability overestimate their competence, while those with higher ability may un-
derestimate theirs. This paper integrates the Dunning–Kruger phenomenon into the
Lindian Levels of Functionality framework, which models actors’ population (o) and
aggregate influence (Φ) across a continuum of development stages from Programming
to Transcendence. We formalize perceived versus actual influence dynamics, propose
a generative model for cognitive bias, and introduce a population-weighted organiza-
tional metric. Finally, we interpret these dynamics specifically regarding interactions
and perceptions associated with the use of Large Language Models (LLMs).

1 Introduction

The Dunning–Kruger effect reveals an inherent asymmetry in human self-assessment, leading
to systemic over- and under-confidence based on true competence levels. When mapped into
the Lindian levels of functionality (ω1 to ω5), this bias can be analyzed using scalar fields
for actor populations and their aggregate influence. This mapping provides insights into
cognitive dynamics within organizations, particularly in understanding differing approaches
and biases in interacting with and perceiving Large Language Models (LLMs).

2 Recall – Lindian Scalar Fields

Let ω ∈ [1, 5] represent continuous levels of functionality. We define:

o(ω) =

∫ ω+1

x=ω

ωx d(−∞) (actor population at level ω) (1)

Φ(ω) =

∫∫ ω+1

x=ω

ωx d(−∞) d(+∞) (aggregate influence at level ω) (2)
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3 Perceived vs. Actual Influence in LLM Interactions

Define:

• Φ(ω): actual aggregate influence resulting from interactions with LLMs

• Ψ(ω): perceived self-assessed influence and competence in using LLMs

The mis-estimation (bias) is:

∆(ω) =
Ψ(ω)− Φ(ω)

Φ(ω)
(3)

4 Generative Bias Model for LLM Usage

Novices interacting with LLMs extrapolate from their limited experience. We model this
with a first-order Taylor expansion of Φ toward the maximum level ωmax = 5:

Ψ(ω) ≈ Φ(ω) + (ωmax − ω)
∂Φ

∂ω
. (4)

Thus, the bias becomes:

∆(ω) =
(ωmax − ω)∂Φ

∂ω

Φ(ω)
, (ωmax = 5) (5)

This captures:

• Low-skill (ω ≈ 1): Over-confidence in simple prompt engineering

• Mid-skill (ω ≈ 3): Under-confidence due to recognition of LLM limitations

• High-skill (ω → 5): Calibrated confidence through deep understanding and meta-
modeling of LLM capabilities

5 Population-Weighted Dunning–Kruger Score

To assess LLM adoption across an organization, weight by actor population o(ω):

DK score =

∫ 5

1
∆(ω) o(ω) dω∫ 5

1
o(ω) dω

. (6)

This metric provides an organizational measure of cognitive calibration specifically for LLM
usage.

2



6 Application to Organizational LLM Integration

In LLM-integrated environments:

• ω1–ω2 users (programmers, tool builders) often overestimate their prompt engineering
skill.

• ω3 engineers, more familiar with complexities, tend toward under-confidence.

• ω4–ω5 transcenders develop sophisticated methodologies and frameworks that align
perceived influence closely with actual effectiveness.

Instrumentation involves tracking objective performance metrics and self-assessment data to
monitor and correct misalignments over time.

7 Conclusion

The Lindian Levels of Functionality framework enables formal modeling of the Dunning–
Kruger effect specifically in the context of LLM interactions. By clearly distinguishing
between perceived and actual influence, organizations can strategically manage cognitive
biases during rapid technological adoption phases. Future work includes more nuanced
models incorporating second-order dynamics and adaptive feedback mechanisms.

Unweighted Jacobian Matrix

Jnew =


α
∂P

∂S
+ β

∂S(I, t)

∂S
+D α

∂P

∂I
+ β

∂S(I, t)

∂I
α
∂P

∂T

γ
∂(S − I)

∂S
+∇·

(
∂g
∂S

∇I
)

−δ + γ
∂(S − I)

∂I
+∇·

(
∂g
∂C

∇I
)

γ
∂(S − I)

∂T

∂h

∂S

∂h

∂I
−ζ + δ

(
1− T

S

)
+ δ

∂
(
1− T/S

)
∂T


Key Jacobian Entries

1. A = α
∂P

∂S
+ β

∂S(I, t)

∂S
+D

Mixes how probabilistic effects and structured influence feed back into Space (plus any
diffusion term).

2. B = α
∂P

∂I
+ β

∂S(I, t)

∂I
Captures how both probability and structure impact Thought.

3. C = α
∂P

∂T
Measures how probabilistic dynamics project into Time.
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4. D1 = γ
∂(S − I)

∂S
+∇·

(
(∂g/∂S)∇I

)
Blends the logistic “gap” between Space and Thought with diffusion of influence gradients
back into Space.

5. E = −δ + γ
∂(S − I)

∂I
+∇·

(
(∂g/∂C)∇I

)
Self-decay of perceived influence, plus how Space–Thought gaps and cyber-driven diffu-
sion shape Thought.

6. F = γ
∂(S − I)

∂T
How the Space vs. Thought “distance” changes over Time.

7. G =
∂h

∂S
Sensitivity of the transformation dynamics to Space.

8. H =
∂h

∂I
Sensitivity of the transformation dynamics to Thought.

9. I1 = −ζ + δ (1− T/S) + δ
∂(1− T/S)

∂T
Base decay in transformation, plus how the current Time-to-Space ratio and itsTime-derivative
feed back.

Jnew =

 A B C
D1 E F
G H I1

 .

Level ωn off-diag weight

ω1 Programming ε = 0.05
ω2 Development • = 0.25
ω3 Engineering ⋄ = 0.60
ω4 Transformation mix: C→S ⋄, C→T △, all others △
ω5 Transcend △ = 1.00

J1 =


1 · A 0.05B 0.05C

0.05D1 1 · E 0.05F

0.05G 0.05H 1 · I1



J2 =


1 · A 0.25B 0.25C

0.25D1 1 · E 0.25F

0.25G 0.25H 1 · I1
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J3 =


1 · A 0.60B 0.60C

0.60D1 1 · E 0.60F

0.60G 0.60H 1 · I1



J4 =


1 · A 0.60B 1.00C

1.00D1 1 · E 1.00F

1.00G 1.00H 1 · I1



J5 =


1 · A 1 ·B 1 · C

1 ·D1 1 · E 1 · F

1 ·G 1 ·H 1 · I1


These five matrices J1 . . .J5 explicitly show how the same core Jacobian update gets

“relativistically” re-weighted at each level of functionality.
Here’s a family of closed-form, “textbook” analytic solutions you can use as starting points

at each level. In each case we approximate the weighted Jacobian by

Jn ≈ an I + bn
(
11T − I

)
where

• an is the (level-specific) average of the three diagonal entries {A,E, I1},

• bn is the (level-specific) off-diagonal scale factor times the average of the six off-diagonal
symbols {B,C,D1, F,G,H},

• 1 = (1, 1, 1)T , and

• I is the 3× 3 identity matrix.

This “uniform-coupling” approximation makes the spectrum, and hence the solution,
fully explicit:

1. Eigenvalues
λ1 = an + 2 bn, λ2,3 = an − bn,

with eigenvectors

v1 = (1, 1, 1)T , v2 = (1,−1, 0)T , v3 = (1, 0,−1)T .

2. General solution for the state x(t) ∈ R3 of ẋ = Jn x:

x(t) = C1 v1 e
λ1t + C2 v2 e

λ2t + C3 v3 e
λ2t,

where the constants Ci are fixed by your initial condition x(0).
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Level-by-Level Parameters

Level Off-diag weight bn Diag avg an (≈) Eigenvalues Behavior

ω1 Programming ε = 0.05 Ā Ā+ 0.10, Ā− 0.05 Almost pure exp(A t); tiny cross-talk “bleeds” out.
ω2 Development • = 0.25 Ā Ā+ 0.50, Ā− 0.25 Noticeable slower/fast modes; tooling ripples appear.
ω3 Engineering ⋄ = 0.60 Ā Ā+ 1.20, Ā− 0.60 Strong “global” mode plus a two-dim’l slower manifold.
ω4 Transformation mixed (b ≈ 0.80) Ā Ā+ 1.60, Ā− 0.80 Very rapid “all-dims” bursts; long tail in orthogonal modes.
ω5 Transcend △ = 1.00 Ā Ā+ 2.00, Ā− 1.00 Maximal leverage: one explosive mode, two damping modes.

Here Ā denotes the arithmetic mean of {A,E, I1} for that level, and bn multiplies the mean
of the six off-diagonal symbols.

How to plug in your actual symbols

1. Compute

Ā = 1
3
(A+ E + I1), B̄ = 1

6
(B + C +D1 + F +G+H).

2. Set
bn = (level-weight)× B̄, an = Ā.

3. Form the approximate
Jn = an I + bn (11

T − I).

4. Write the solution

x(t) = C1 (1, 1, 1)
T e(an+2bn)t + C2 (1,−1, 0)T e(an−bn)t + C3 (1, 0,−1)T e(an−bn)t.

Why this matters:

• At ω1, bn is so tiny that all three modes collapse to nearly the same exponential ea1t.

• As you climb levels, bn grows, splitting the dynamics into one fast “global” expansion
mode and two slower “differential” modes.

1 Starting points

Dunning–Kruger bias at functionality level ω ∈ {1, . . . , 5}

∆(ω) =
Ψ(ω)− Φ(ω)

Φ(ω)
=

(5− ω) ∂ωΦ

Φ(ω)
(DK–1)
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Baseline level–weighted Jacobian family

Jn = anI + bn
(
11⊤ − I

)
, bn = wn B̄, an = Ā, (J–1)

w1 = 0.05, w2 = 0.25, w3 = 0.60, w4 ≈ 0.80, w5 = 1.00.

2 Bias–adjusted scaling

Introduce two hyper–parameters κ (off–diagonal sensitivity) and λ (diagonal sensitivity):

b̃n = bn
(
1 + κ∆(ωn)

)
, ãn = an + λ∆(ωn) (INT–1)

3 Integrated Jacobian

J̃n = ãnI + b̃n
(
11⊤ − I

)
(INT–2)

λ1 = ãn + 2b̃n, λ2,3 = ãn − b̃n. (INT–3)

4 Organisation–wide calibration

DKorg =

∫ 5

1

∆(ω) o(ω) dω∫ 5

1

o(ω) dω

(DK–2)

Set κ, λ as linear (or clipped) functions of DKorg to tilt all Jacobians simultaneously.

5 Practical workflow

# Action Feeds into

1 Measure Φ(ω), Ψ(ω) ⇒ ∆(ω) Bias inputs
2 Derive an, bn via (J–1) Jacobian skeleton

3 Apply (INT–1) to get ãn, b̃n Integrated Jacobian

4 Analyse eigen–values & simulate ẋ = J̃nx Stability map
5 Reduce |∆| through training/hiring Feedback loop

6 Tuning hints

• Start with κ≈1, λ≈0 to affect only cross–talk.

• Clip to |κ∆| ≤ 1 to keep b̃n ≥ 0.

• Monte–Carlo κ, λ,∆ distributions to stress–test before rolling out new LLM workflows.
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How Dunning–Kruger Bias Shrinks Closed–Form Possibilities

# Bounded analytic aspect Why DK reduces the admissible set

1 Spectral locality Bias-adjusted scale b̃n = bn (1 + κ∆) clips b to bn(1−
κ)≤ b̃n≤bn(1 + κ). Eigen-pairs that relied on the full
line segment of b no longer exist.

2 Lyapunov candidates J̃n now depends on state/population via ∆(ω, t). A
single quadratic P ≻ 0 must satisfy P J̃n + J̃⊤nP ≺ 0
for all ∆, shrinking the feasible P to (sometimes) an
empty set and forcing SOS/LMI search.

3 Exact matrix exponentials Time-varying ∆ makes x(t) = T exp
(∫

J̃(t) dt
)
x(0)

path-ordered; simple exp(λt) forms survive only when
∆ is constant or |κ∆| ≪ 1 (Magnus expansion).

4 Normal-form reducibility The unbiased Jacobian is “rank-one perturbed diago-
nal” and fully reducible. Multiplicative DK perturba-
tions break the commutator structure, so Poincaré–
Dulac or Jordan tricks require higher-order terms;
closed forms disappear outside small-bias limits.

Take-away. Dunning–Kruger does not render the system unsolvable, but it carves away
many friendly corners of the solution landscape. Analysts should expect to replace global
closed forms with (i) piecewise-analytic patches where ∆ is quasi-static, or (ii) perturba-
tive/numerical treatments that respect the cognitive-bias envelope |κ∆| ≤ 1.
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