Defining *Hacking* in the Lindian Levels of Functionality Model

Jason L. Lind

April 15, 2025

Contents

1 Introduction

The Lindian Levels of Functionality framework (page 10 of A Treatise on Reality) introduces two key scalar quantities for each level ω_n :

- The **population** of actors at that level, \mathfrak{o}_n .
- The aggregate influence/power they wield, Φ_n .

This paper asks which of their derivatives best captures the cybersecurity notion of "hacking."

2 Key Quantities

Symbol	Measures	Definition	Intuition
\mathfrak{o}_n	Actor population at level ω_n	$ \mathfrak{o}_n = \int_{x=n}^{n+1} \omega_x d(-\infty) \gg $ $ \mathfrak{o}_{n+1} $	How many agents operate at that level.
Φ_n	Aggregate influence/power	$ \Phi_n = \iint_{x=n}^{n+1} \omega_x d(-\infty) d(+\infty) \ll \Phi_{n+1} $	How much <i>leverage</i> their actions exert system-wide.

Table 1: Scalar fields defined for each level of functionality.

3 Desired Semantics of "Hacking"

Hacking is typically a small, asymmetric intervention that produces an outsized systemic effect:

- It manifests as a rapid change in **influence** $(\Delta\Phi)$.
- It does not require a large change in the actor population $(\Delta \mathfrak{o})$.

Candidate	Mathematical Form	Fit to "Hacking"
$\frac{\partial \Phi}{\partial t}$ or $\nabla_{\omega}\Phi$	Rate of change of influence/power	✓ Captures the sudden leverage shift produced by an exploit, independent of head-count.
$\frac{\partial \mathfrak{o}}{\partial t}$ or $\nabla_{\omega}\mathfrak{o}$	Rate of change of actor population	× Reflects recruitment or botnet growth—useful for <i>scaling</i> attacks but not for the essence of hacking.

Table 2: Evaluating derivatives against the intuitive meaning of hacking.

4 Derivative Candidates

5 Formal Definition

Hacking :=
$$\frac{\partial \Phi}{\partial t}$$
 or $\nabla_{\omega} \Phi$ (1)

This definition:

- 1. **Aligns with leverage** it directly measures redistribution of power.
- 2. Is scale-free a lone actor can generate a large $\partial \Phi$ even if $\partial \mathfrak{o} \approx 0$.
- 3. **Matches security intuition** an exploit appears first as a spike in effective control, not as new head-count.

6 Implications and Future Work

The derivative of \mathfrak{o} remains valuable for quantifying *mobilization* (e.g., botnet expansion or mass social-engineering campaigns). Future research can explore coupled dynamics:

$$\frac{d}{dt} \begin{bmatrix} \Phi \\ \mathfrak{o} \end{bmatrix} = \mathbf{F}(\Phi, \mathfrak{o}, \dots),$$

where feedback loops between influence and population growth determine the sustainability of hacking campaigns.

Acknowledgements

Concepts and notation are drawn from A Treatise on Reality (2020). Special thanks to reviewers who clarified the role of influence versus population in cyber-operations.